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Abstract. Given two quantum matrices A ∈ GLq(n) and A′ ∈ GLq ′ (n) can one impose quadratic
relations between elements of A and A′ which (a) are consistent and (b) imply that the product matrix
AA′ is in GLq ′′ (n)? This question is studied systematically in two and three dimensions. In two
dimensions, five families of solutions are found, one of which generalizes the relations between A

and its inverse A−1. For each family, the results are compared with the quantum transpose condition
introduced by Ogievetsky and Wess. In three dimensions, we prove that non-trivial solutions are
absent, a fact which prevents further generalization.

1. Introduction

This is an attempt to answer some questions regarding the product of quantum matrices in two
and more dimensions. The GLq(n) quantum matrices considered in this paper may be viewed
as linear mappings taking a quantum vector from the n-dimensional quantum plane to another
quantum vector. Yet such mappings cannot be composed at will and produce a similar object.
The square of a quantum matrix for example is not, in general, a quantum matrix itself. It
is known, though, that it works in some situations. For example, the nth power of a GLq(2)

matrix is a GLqn(2) matrix [1, 2, 5], but this is not valid in higher dimensions. On the other
hand, the product of two GLq(n) matrices whose elements commute with one another is again
a GLq(n) matrix. This is no longer true if the parameters q are taken to be different or if
the elements do not simply commute. For the two-dimensional case Ogievetsky and Wess
[4] have unified these two situations by giving a sufficient condition for the product of two
2 × 2 quantum matrices to be itself a quantum matrix (presented in section 2). It involves
the definition of a quantum analogue to the transposition of matrices and expresses as a set
of relations among the elements of the two matrices containing quadratic monomials as well
as inverted quantum determinants. These relations are, however, not sufficient to order any
product of elements of both matrices. The existence of a set of quadratic relations that have
this property and guarantee that the product is a quantum matrix should be of great help in
order to generalize to higher dimensions and to shed some light on the product of quantum
matrices. This paper focuses on finding such relations in two and three dimensions.

To achieve this a systematic procedure is applied. Taking two quantum matrices, one in
GLq(n) the other in GLq ′(n), we consider general quadratic relations among their elements
and impose the fulfilment of the four requirements in turn. This method is described in section 3
using the R̂-matrix formulation as well as illustrated on a special kind of relations valid in all
dimensions and appearing later in this study. Section 4 is devoted to applying this procedure
to the two-dimensional case. The quantum transpose condition is then shown to be satisfied
a posteriori. It appears that the values of q and q ′ are very much restricted. In fact, we find
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that they can either be equal or inverse. Accordingly, the product lies in GLq ′′(n) only if q ′′

equals q, q ′ or their inverses. When q ′ = 1
q

and q ′′ = 1 we have one more interesting solution
which generalizes the construction of the quantum inverse matrix.

The same method is applied to 3 × 3 quantum matrices in section 5, bringing this time
negative results, the only solution surviving the four requirements being the commuting one.

2. Quantum transpose condition

In this section we briefly present the q-transpose condition for the product of two 2×2 quantum
matrices to be a quantum matrix. These results have been established for general two-parameter
deformations of GL(2), yet since we will consider only one-parameter deformations we will
restrict this presentation to GLq(2).

2.1. The quantum transpose

Given a GLq(2) matrix T

T =
(

a b

c d

)
(1)

with elements satisfying the usual GLq(2) relations

ab = q ba

ac = q ca

ad = da + λ cb

bc = cb

bd = q db

cd = q dc

(2)

where λ = q − q−1, its quantum transpose is defined as

τT = 1

D

(
a q c

b/q d

)
. (3)

D appearing in the above is the quantum determinant of T

D = det
q

T = da − 1

q
cb. (4)

In the GLq(2) case D is central. Hence its inverse can be used easily, and put on either side
of the matrix in the definition of the transpose.

2.2. q-transpose relations

We now consider two quantum matrices with different parameters: T ∈ GLq(2) and
T ′ ∈ GLq ′(2). T elements will be taken as before and T ′ will be primed, respectively.
Their matrix product will be denoted by T ′′ = T · T ′,

T ′′ =
(

aa′ + bc′ ab′ + bd ′

ca′ + dc′ cb′ + dd ′

)
. (5)

The q-transpose condition reads as follows.
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Theorem 1. If there exists q ′′ and D′′ such that

τ(T ′) τ(T ) = 1

D′′

(
aa′ + bc′ q ′′ (ca′ + dc′)

q ′′−1
(ab′ + bd ′) cb′ + dd ′

)
(6)

then T ′′ ∈ GLq ′′(2) and D′′ = detq ′′(T ′′).

When this condition is satisfied the right-hand side is precisely the quantum transpose of the
quantum matrix T ′′. Thus, with some loss of rigour, the theorem can be stated as follows.

Corollary 1. If τ(T ′) τ(T ) = τ(T · T ′) then T ′′ = T · T ′ ∈ GLq ′′(2).

To see how such a condition can be satisfied, let us write the corresponding relations
explicitly. We obtain four relations:

1

D′

(
a′a +

q ′

q
c′b
)

1

D
= 1

D′′ (aa′ + bc′)

1

D′ (q a′c + q ′ c′d)
1

D
= q ′′

D′′ (ca′ + dc′)

1

D′

(
1

q ′ b′a +
1

q
d ′b
)

1

D
= 1

D′′ q ′′ (ab′ + bd ′)

1

D′

(
q

q ′ b′c + d ′d
)

1

D
= 1

D′′ (cb′ + dd ′).

(7)

These relations do not allow for completing reordering of the products. To be able to order any
product of T and T ′ elements one needs, in general, 16 quadratic relations. In the commuting
case we have obvious ordering relations. The existence of such relations, in general, will be
the main subject of the following sections.

3. General setting

3.1. Quantum matrices in n dimensions

Recall that the quantum group relations of GLq(n) can be expressed using an R̂-matrix [3] as
follows:

R̂
ij

αβ T α
k T

β

l = T i
αT

j

β R̂
αβ

kl (8)

with

R̂
ij

kl = qδij δi
l δ

j

k + λ θ(l − k) δi
kδ

j

l (9)

where

λ = q − q−1

θ(u) =
{

1 if u > 0

0 otherwise

qδij = 1 + (q − 1) δij .

Unless otherwise stated, in relation (8) and throughout this section summation will be
performed over repeated Greek indices while Latin indices will never be summed. Note
that relations (8) allow for complete ordering of products in lexicographic order:

T i
j < T k

l ⇔ (i < j or i = j, k < l). (10)
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3.2. Requirements

So we will consider two quantum matrices T ∈ GLq(n) and T ′ ∈ GLq ′(n) each satisfying
the above relations with its own R̂-matrix; R̂ and R̂′, respectively. Next we will impose four
requirements:

(a) the relations must allow reordering of any product of T and T ′ elements;
(b) the product T · T ′ must be a quantum matrix with parameter q ′′;
(c) the relations must be compatible with the quantum group relations of both GLq(2) and

GLq ′(2);
(d) the relations must respect the Z-grading of the matrices and their product.

In fact, an additional assumption to the first requirement will be used extensively
in the subsequent calculations: the set of products T i

j T ′k
l is assumed to be linearly

independent. Thus in the process of investigating requirement (b), the products
{T i

j T k
l T ′s

t T
′u
v, T i

j T k
l ordered, T ′s

t T
′u
v ordered} will be used as a basis for such products.

Similarly, when studying requirement (c), the sets {T i
j T k

l T ′s
t , T i

j T k
l ordered} and

{T k
l T ′s

t T
′u
v, T ′s

t T
′u
v ordered} will be considered free. Though it eases the calculations and

seems to stick to the most general situation of arbitrary T and T ′, this assumption is restrictive
enough not to be satisfied in at least two known cases of a working product: the square in two
dimensions, and the inverse.

General homogeneous, quadratic ordering relations among T and T ′ elements may be
written as follows:

T ′i
j T k

l = "
ikβε

jlαγ T α
β T ′γ

ε . (11)

3.2.1. Grading. The grading is the usual Z-grading of matrices. Let T be an n × n matrix,
the grading of an element T i

j is a sequence of length k − 1 whose kth element is given by[
T i

j

] = Gi
j = (

Gi
j,1, Gi

j,2, . . . , Gi
j,n

)
(12)

Gi
j,k = θ(j − k) − θ(i − k). (13)

Thus in two dimensions we have

G =
(

(0) (1)

(−1) (0)

)
(14)

and in three dimensions

G =




(0, 0) (0, 1) (1, 1)

(0, −1) (0, 0) (1, 0)

(−1, −1) (−1, 0) (0, 0)


. (15)

Both quantum group relations and the product respect this grading. The requirement that the
crossing coefficients " respect it as well reads

"iktv
j lsu �= 0 ⇒ Gi

j + Gk
l = Gs

t + Gu
v. (16)

The sum and equality on the right-hand side is taken term by term. Using (13) it translates to

∀ξ ∈ Nn−1

θ(j − ξ) + θ(l − ξ) + θ(s − ξ) + θ(u − ξ) = θ(i − ξ) + θ(k − ξ) + θ(t − ξ) + θ(v − ξ).

(17)

We will not write the effect of this condition explicitly for the moment, though it will be taken
into account later.
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3.2.2. Product. We now come to the main requirement, that the product should be a quantum
matrix i.e. T ′′ = T · T ′ ∈ GLq ′′(n). In coordinates,

T ′′i
j = T i

µT ′µ
j (18)

and

R̂′′ij
αβ T ′′α

k T ′′β
l = T ′′i

αT ′′j
β R̂′′αβ

kl (19)

or

R̂′′ij
αβ T α

σ T ′σ
k T β

τ T ′τ
l = T i

σ T ′σ
α T j

τ T ′τ
β R̂′′αβ

kl . (20)

Applying the crossing relations (11) we obtain

R̂′′ij
αβ "

σβνψ

kτµφ T α
σ T µ

ν T ′φ
ψ T ′τ

l = T i
σ T µ

ν T ′φ
ψ T ′τ

β "
σjνψ

ατµφ R̂′′αβ

kl . (21)

We then order the T –T and T ′–T ′ products separately and identify the coefficients of the
T T T ′T ′ monomials we obtain. We thus get a linear system of the " coefficients that we solve
using Mathematica.

3.2.3. Compatibility. Checking the compatibility comes next. Formally, this is performed as
follows. Let us take, for example, the expression

T ′a
b

(
R̂

ij

αβ T α
k T

β

l − T i
αT

j

β R̂
αβ

kl

)
. (22)

According to (8) this must be zero. Now let us move T ′a
b through the parentheses using the

crossing relations (11). We find something awful:

R̂
ij

αβ "
aανχ

bkµφ "φβρτ
χρπσ T µ

ν T π
ρ T ′σ

τ = T µ
ν T π

ρ T ′σ
τ "

aiνχ

bαµφ "
φjρτ

χβπσ R̂
αβ

kl . (23)

After reordering and identifying the coefficients of the ordered monomials we obtain a system
of quadratic equations in the coefficients ". These are half the equations that express
compatibility. The other half is obtained by moving a T element through the primed version of
relation (8) from the right. Even with the grading assumption this system is difficult to solve
as is. That is why we solve it only after the linear system of the product condition has already
restricted the coefficients.

3.3. A special case

There is one special case that will appear in the three-dimensional case and that easily
generalizes to all dimensions. In that case, all q’s are equal, namely

q = q ′ = q ′′ (24)

R̂ = R̂′ = R̂′′ (25)

the crossing tensor " has a very simple form:

"iktv
j lsu = "̃it

ul δk
s δv

j . (26)

Substituting into (11) leads to

T ′i
j T k

l = "̃
iβ

αl T
k
β T ′α

j . (27)
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To comply with the grading, according to (27) and (13) we must have

Gi
j + Gk

l = Gk
β + Gα

j (28)

⇔ ∀ξ ∈ Nn−1

θ(j − ξ) + θ(l − ξ) + θ(k − ξ) + θ(α − ξ) = θ(i − ξ) + θ(k − ξ) + θ(β − ξ) + θ(j − ξ)

(29)

⇔ ∀ξ ∈ Nn−1

θ(l − ξ) + θ(α − ξ) = θ(i − ξ + θ(β − ξ) (30)

⇔ Gi
l = Gα

β. (31)

Hence "̃
ij

kl �= 0 implies Gi
l = G

j

k , which can be achieved only if (i, l) and (j, k) represent the
same position in the matrix, i.e. i = l, j = k, or if they are both diagonal, i.e. i = j, k = l.
Thus "̃ must be of the form

"̃
ij

kl = M̃klδ
i
kδ

j

l + Ñklδ
i
l δ

j

k . (32)

When i = j and k = l, this gives
(
M̃kk + Ñkk

)
δi

kδkl and allows us to set

Ñkk = 0 ∀k � n (33)

to normalize the diagonal.

3.3.1. Product. Let us see what the product condition gives. Substituting (26) into (21) we
obtain

R̂′′ij
αβ "̃σν

φτ T α
σ T β

ν T ′φ
k T ′τ

l = T i
σ T j

ν T ′φ
α T ′τ

β "̃σν
φτ R̂′′αβ

kl . (34)

Thanks to (25) we can use quantum group relations (8) on both sides:

"̃σν
φτ R̂

ij

αβ T α
σ T β

ν T ′φ
k T ′τ

l = T i
σ T j

ν T ′φ
α T ′τ

β R̂′αβ

kl "̃σν
φτ (35)

"̃σν
φτ T i

α T
j

β R̂αβ
σν T ′φ

k T ′τ
l = T i

σ T j
ν R̂′φτ

αβ T ′α
k T ′β

l "̃σν
φτ . (36)

By renaming the right-hand side indices, dropping the unnecessary primes on R̂’s and gathering
terms, we finally obtain

T i
α T

j

β

(
R̂αβ

σν "̃σν
φτ − "̃αβ

σν R̂σν
φτ

)
T ′φ

k T ′τ
l = 0 (37)

from which we deduce

R̂
ij

αβ "̃
αβ

kl = "̃
ij

αβ R̂
αβ

kl . (38)

Thus in this case, T ′′ ∈ GLq(n) is equivalent to R̂ "̃ = "̃ R̂.
We must now inject form (32) into this:

M̃kl R̂
ij

kl + Ñkl R̂
ij

lk = M̃ij R̂
ij

kl + Ñji R̂
ji

kl . (39)

Using the expression of the R̂-matrix (9)

δi
kδ

j

l qδij
(
Ñkl − Ñlk

)
+ δi

l δ
j

k

(
qδij

(
M̃kl − M̃lk

)
+ λ

(
θ(k − l) − θ(l − k)

)
Ñkl

) = 0 (40)

which finally gives

Ñkl = Ñlk (41)

M̃kl = M̃lk + λ (θ(k − l) − θ(l − k)) Ñkl . (42)
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3.3.2. Compatibility. We then have to check for compatibility. It is expressed by equality (23).
Substituting relations (27) into that equation, we obtain

R̂
ij

αβ T α
ν T β

ρ "̃aν
φk "̃

φρ

σ l T ′σ
b = T i

ν T j
ρ "̃aν

φα "̃
φρ
σβ R̂

αβ

kl T ′σ
b . (43)

Applying (8) once more to the left-hand side and renaming indices on the right-hand side,
leads to

T i
α T

j

β

(
R̂αβ

νρ "̃aν
φk "̃

φρ

σ l − "̃aα
φν "̃φβ

σρ R̂
νρ

kl

)
T ′σ

b = 0 (44)

and hence to

R̂ij
µν "̃

aµ

φk "̃
φν

bl = "̃ai
φµ "̃

φj

bν R̂
µν

kl . (45)

Setting for each a and b,

(0a
b)

ij

kl = "̃ai
φk "̃

φj

bl (46)

this simply reads

R̂ 0a
b = 0a

b R̂ (47)

which is then equivalent to the following four relations:

i = j k < l (0a
b)ii

kl = q (0a
b)ii

lk (48)

i < j k = l (0a
b)

ij

kk = q (0a
b)

ji

kk (49)

i < j k > l (0a
b)

ij

kl = (0a
b)

ji

lk (50)

i < j k < l (0a
b)

ij

kl = (0a
b)

ji

lk + λ (0a
b)

ji

kl . (51)

Using (33), definition (46) reads

(0a
b)

ij

kl = M̃ak M̃bl δa
b δi

k δ
j

l + M̃ak Ñbl δa
l δi

k δ
j

b + Ñik M̃bl δa
k δi

b δ
j

l s + Ñik Ñbl δa
k δi

l δ
j

b . (52)

Consider relation (48). The condition k < l suppresses the first term in (52). Using the
normalization of Ñ (33), it reads

δi
b

(
δa

l δi
k

(
M̃lk Ñkl − q Ñkl M̃kk

)
+ δa

k δi
l

(
Ñlk M̃ll − q M̃kl Ñlk

)) = 0 (53)

giving two relations for k < l

Ñkl

(
M̃lk − q M̃kk

) = 0 (54)

Ñlk

(
M̃ll − q M̃kl

) = 0. (55)

Relation (49) similarly gives for i < j

Ñji

(
M̃ii − q M̃ji

) = 0 (56)

Ñij

(
M̃ij − q M̃jj

) = 0. (57)

Renaming i < j to k < l and making use of Ñkl = Ñlk (41) we have, for k < l,

Ñkl

(
M̃lk − q M̃kk

) = 0 (58)

Ñkl

(
M̃kk − q M̃lk

) = 0 (59)

and

Ñkl

(
M̃ll − q M̃kl

) = 0 (60)

Ñkl

(
M̃kl − q M̃ll

) = 0. (61)
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which implies, for k < l,

Ñkl M̃lk = 0 (62)

Ñkl M̃kl = 0. (63)

Using (42), we can rewrite the second equation as

k < l Ñkl

(
M̃lk − λ Ñkl

) = 0. (64)

The first equation then leads to

k < l Ñ2
kl = 0

k < l Ñkl = 0.
(65)

Equations (33), (41) and (65) simply mean that

Ñ = 0. (66)

It is easy to see that (48)–(51) are satisfied and bring no new restriction.

3.3.3. Summary. In the case when q = q ′ = q ′′, if we ask for crossing relations of the
form (27)

T ′i
j T k

l = "̃
iβ

αl T k
β T ′α

j (67)

the grading, compatibility and product requirements constrain "̃ to

"̃
ij

kl = M̃kl δi
k δ

j

l (68)

where M̃ is a symmetric n × n matrix. We then simply have

T ′i
j T k

l = M̃il T k
l T ′i

j (69)

M̃il = M̃li . (70)

4. Product of 2 × 2 matrices

In the two-dimensional case we have the results of section 2. Yet the presence of the
determinants makes solving the transpose relations directly a difficult task. Indeed, as long
as we do not have relations allowing one to move an unprimed element through a primed
determinant and vice versa we have no easy way of manipulating the equations. We therefore
chose to study the problem in the general setting of section 2 and check afterwards how these
relations may extend the quantum transpose relations. Since the number of generators (4 + 4)
and the number of coefficients (70) are acceptable, we will work directly with them without
matrix and tensor indices.

4.1. Crossing relations

In two dimensions the grading is simply (14)

G =
(

(0) (1)

(−1) (0)

)
. (71)
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The translation of relations (11) satisfying the grading conditions is as follows:

b′b = µ1 bb′ (72)

a′b = µ2 ba′ + µ3 ab′ + µ4 db′ + µ5 bd ′ (73)

b′a = µ6 ba′ + µ7 ab′ + µ8 db′ + µ9 bd ′ (74)

b′d = µ10 ba′ + µ11 ab′ + µ12 db′ + µ13 bd ′ (75)

d ′b = µ14 ba′ + µ15 ab′ + µ16 db′ + µ17 bd ′ (76)

a′a = µ18 aa′ + µ19 da′ + µ20 cb′ + µ21 bc′ + µ22 ad ′ + µ23 dd ′ (77)

a′d = µ24 aa′ + µ25 da′ + µ26 cb′ + µ27 bc′ + µ28 ad ′ + µ29 dd ′ (78)

b′c = µ30 aa′ + µ31 da′ + µ32 cb′ + µ33 bc′ + µ34 ad ′ + µ35 dd ′ (79)

c′b = µ36 aa′ + µ37 da′ + µ38 cb′ + µ39 bc′ + µ40 ad ′ + µ41 dd ′ (80)

d ′a = µ42 aa′ + µ43 da′ + µ44 cb′ + µ45 bc′ + µ46 ad ′ + µ47 dd ′ (81)

d ′d = µ48 aa′ + µ49 da′ + µ50 cb′ + µ51 bc′ + µ52 ad ′ + µ53 dd ′ (82)

a′c = µ54 ca′ + µ55 ac′ + µ56 dc′ + µ57 cd ′ (83)

c′a = µ58 ca′ + µ59 ac′ + µ60 dc′ + µ61 cd ′ (84)

c′d = µ62 ca′ + µ63 ac′ + µ64 dc′ + µ65 cd ′ (85)

d ′c = µ66 ca′ + µ67 ac′ + µ68 dc′ + µ69 cd ′ (86)

c′c = µ70 cc′. (87)

The relations are presented from highest grading to lowest grading: the first equation contains
only terms of grading (+2), the next four those of grading (+1) followed by the six relations
of grading (0) and then the negative gradings. Obviously, not all the coefficients appearing in
the same relation can be taken to be simultaneously zero. This simple remark will be of quite
some use in the solving process.

The product requirement reads in components:

(aa′ + bc′)(ab′ + bd ′) = q ′′ (ab′ + bd ′)(aa′ + bc′) (88a)

(aa′ + bc′)(ca′ + dc′) = q ′′ (ca′ + dc′)(aa′ + bc′) (88b)

(aa′ + bc′)(cb′ + dd ′) = (cb′ + dd ′)(aa′ + bc′′) + λ′′(ca′ + dc′)(ab′ + bd ′) (88c)

(aa′ + bd ′)(ca′ + dc′) = (ca′ + dc′)(aa′ + bd ′) (88d)

(ab′ + bd ′)(cb′ + dd ′) = q ′′ (cb′ + dd ′)(ab′ + bd ′) (88e)

(ca′ + dc′)(cb′ + dd ′) = q ′′ (cb′ + dd ′)(ca′ + dc′). (88f)

We expand these relations, apply the crossing relations to the central product in each term
and then reorder the T –T and T ′–T ′ product. We then identify the coefficients to obtain
the system of linear equations constraining the µi’s. After solving this system, the resulting
crossing relations read

a′a = −q ′µ3 ad ′ − q ′µ4 dd ′ + µ18 aa′ + µ19 da′ + µ21 bc′ (89)

a′b = µ2 ba′ + µ3 ab′ + µ4 db′ (90)

a′c = −q ′q ′′µ3

q
cd ′ +

q ′′µ18

q
ca′ +

(
q ′′µ12 − q ′µ25 +

q ′′µ36

q ′

)
dc′ (91)
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a′d = q ′′µ3

q
cb′ + µ25 da′ + µ27 bc′ (92)

b′a = q ′µ18

q ′′ ab′ +
q ′µ19

q ′′ db′ +

(
µ2

q ′′ − µ25

q
+

q ′′µ36

q

)
bd ′ (93)

b′b =
(

λ′

q ′′ µ2 +
µ21

q ′′ +
µ25

qq ′ − q ′′ µ36

qq ′

)
bb′ (94)

b′c = −q ′µ10 bc′ +
q ′µ18

q
cb′ + µ36 dd ′ (95)

b′d = µ10 ba′ + µ12 db′ +
q ′µ27

q ′′ bd ′ (96)

c′a = qq ′µ4 cd ′ − qµ19 ca′ +
(
µ12 − λ′µ36

)
ac′ (97)

c′b = −qµ4 cb′ + µ36 aa′ + µ39 bc′ (98)

c′c = q ′′
(

−λµ12 + µ21 + qq ′µ25 +

(
1

qq ′ − q

q ′ − q ′

q

)
µ36

)
cc′ (99)

c′d = −qµ27 ac′ + (q ′′µ2 − qµ25 +
q ′′µ36

q
) ca′ +

q ′′µ39

q
dc′ (100)

d ′a = −qq ′µ19

q ′′ cb′ +
(
µ25 − λ′′µ36

)
ad ′ − qq ′µ49

q ′′ bc′ (101)

d ′b =
(

µ12

q ′′ − µ25

q ′ +
q ′′µ36

q ′

)
ab′ +

q ′µ39

q ′′ bd ′ +
qµ49

q ′′ ba′ (102)

d ′c = qq ′µ10 ac′ + (µ2 − λµ36) cd ′ − q ′µ49 dc′ (103)

d ′d = −qµ10 aa′ +
(
λ′µ2 − λµ12 + µ21

)
cb′ − qq ′µ27

q ′′ ad ′ +
q ′µ39

q
dd ′ + µ49 da′. (104)

4.2. Compatibility

We now impose compatibility conditions on the coefficients. After solving the system of
quadratic equations in the µi’s generated by these relations, it appears that the values of q ′

are restricted to {q, q−1} and those of q ′′ to {1, q, q−1}, respectively. In fact, not all the
combinations are allowed and we have five families of solutions. Before listing them let us
make some remarks on the symmetries of the equation sets we have.

GLq(2) relations (2) are invariant under the following two transformations and their
compose:

b ↔ c

and

a ↔ d

q → q−1.

Relations (88) expressing the product requirement are invariant under both compositions of
these transformations for T and T ′:

a ↔ d a′ ↔ d ′

b ↔ c b′ ↔ c′

q → q−1 q ′ → q ′−1
.

(105)
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This transformation will be denoted by 1. The compatibility relations are also invariant under
this symmetry.

Moreover, since both product and compatibility relations are homogeneous in both primed
and unprimed elements, any overall scale factor introduced in relations (72)–(87) will become
factored out. Thus we have the freedom of fixing one of the µi’s conveniently. We will usually
set

µ1 = 1. (106)

The first family is diagonal and is exactly the result of section 1:

T ′i
j T k

l = Mi
l T k

l T ′i
j (107)

with

Mi
l = Ml

i . (108)

The next two families are for q ′ = q−1, q ′′ = 1. The first reads

a′a = aa′ + q−1λ bc′ (109a)

a′b = q−1ba′ (109b)

a′c = q−1ca′ (109c)

a′d = da′ (109d)

b′a = q−1 ab′ (109e)

b′b = bb′ (109f)

b′c = q−2 cb′ − q−1φ bc′ (109g)

b′d = q−1 db′ + φ ba′ (109h)

c′a = q−1 ca′ (109i)

c′b = bc′ (109j)

c′c = cc′ (109k)

c′d = q−1 dc′ − λ ca′ (109l)

d ′a = ad ′ (109m)

d ′b = q−1 db′ − λ ab′ (109n)

d ′c = q−1 cd ′ + φ ac′ (109o)

d ′d = q−1 dd ′ − q−1λ cb′ − qφ aa′. (109p)

And the second one is obtained by applying 1 (105).
The following two cases also occur for q ′ = q−1 but this time we have either q ′′ = q and

a′a = q aa′ + λ bc′ (110a)

a′b = ba′ (110b)

a′c = q ca′ + λ dc′ (110c)

a′d = da′ (110d)

b′a = q−1 ab′ (110e)
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b′b = bb′ (110f)

b′c = q−1 cb′ (110g)

b′d = db′ (110h)

c′a = ac′ (110i)

c′b = q bc′ (110j)

c′c = cc′ (110k)

c′d = q dc′ (110l)

d ′a = ad ′ (110m)

d ′b = q−1 bd ′ − λ ab′ (110n)

d ′c = cd ′ (110o)

d ′d = q−1 dd ′ − λ cb′ (110p)

or q ′′ = q−1 and

a′a = q aa′ + λ bc′ (111a)

a′b = ba′ (111b)

a′c = q−1 ca′ (111c)

a′d = da′ (111d)

b′a = q ab′ + λ bd ′ (111e)

b′b = bb′ (111f)

b′c = q−1 cb′ (111g)

b′d = db′ (111h)

c′a = ac′ (111i)

c′b = q bc′ (111j)

c′c = cc′ (111k)

c′d = q−1 dc′ − λ ca′ (111l)

d ′a = ad ′ (111m)

d ′b = q bd ′ (111n)

d ′c = cd ′ (111o)

d ′d = q−1 dd ′ − λ cb′. (111p)

The symmetry transformation 1 sends each of these solutions to itself.
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4.3. Transpose conditions

Following our programme, we must finally check whether these solutions verify the quantum
transpose relations of section 2. For the diagonal solutions this is obvious. We will therefore
concentrate on the other four cases with q ′ = q−1.

In order to compute the left-hand side of relations (7) we have to be able to express the
commutation relations of D−1 with all T ′ elements. We will derive such relations from the
corresponding commutations of D with T ′ elements. Now that we have full ordering relations
for T –T ′ products it is possible to compute such relations.

4.3.1. q ′ = q−1, q ′′ = 1 cases. Since these two cases exchange through 1 all the
calculations are similar and we shall study only the first one, i.e. (109a)–(109p). We can
write the commutations of D with T ′ elements as follows:

a′D = q−2 Da′ + q−1λ da′′ (112a)

b′D = q−2 Db′ + φ ba′′ (112b)

c′D = q−2 Dc′ − λ ca′′ (112c)

d ′D = q−2 Dd ′ − qφ aa′′ (112d)

where a′′ = aa′ + bc′ is T ′′1
1. This indeed allows us to invert D because we have the additional

relations

[T i
j , a′′] = 0 (113)

and consequently

[D, a′′] = 0. (114)

Thus, we can write

a′D−1 = q2 D−1a′ − qλ D−2da′′ (115a)

b′D−1 = q2 D−1b′ − q2φ D−2ba′′ (115b)

c′D−1 = q2 D−1c′ + λ D−2ca′′ (115c)

d ′D−1 = q2 D−1d ′ + q3φ D−2aa′′. (115d)

Substituting these in the left-hand side of equations (7) with q ′ = q−1, we find

D′−1
(a′a + q−2c′b)D−1 = D′−1

D−1
(
q2a′a + c′b − qλD−1(da − q−1cb)a′′) (116a)

D′−1
(qa′c + q−1c′d)D−1 = D′−1

D−1
(
q3a′c + qc′d − q2λD−1(dc − q−1cd)a′′) (116b)

D′−1
(qb′a + q−1d ′b)D−1 = D′−1

D−1
(
q3b′a + qd ′b − φq3D−1(ba − q−1ab)a′′) (116c)

D′−1
(q2b′c + d ′d)D−1 = D′−1

D−1
(
q4b′c + q2d ′d − φq3D−1(q bc − ad)a′′). (116d)

In the first and last relation, we recognize the q-determinant D = ad − q bc = da − q−1 cb

which we can simplify with D−1. In the two central equations the last term simply cancels due
to GLq(2) relations. We next apply the crossing relations (109a)–(109p) on the right-hand
side and substitute a′′ = aa′ + bc′:

D′−1
D−1

(
q2 (aa′ + bc′) − qλ (aa′ + bc′)

)
(117a)

D′−1
D−1

(
ca′ + dc′) (117b)

D′−1
D−1

(
ab′ + bd ′) (117c)

D′−1
D−1

(
cb′ + dd ′ − q3φbc′ − q3φaa′ + φq3 (aa′ + bc′)

)
(117d)
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which is precisely relations (7) with q ′′ = 1 and D′′ = DD′. This last equality is easy to
verify.

Before switching to the other cases let us make one remark. As one would expect from the
values of q ′ and q ′′, these crossing relations are indeed related to the inverse of the quantum
matrix T :

T −1 = D−1

(
d −q−1 b

−q c a

)
. (118)

In fact, if we set

a′ = d b′ = −q−1 b (119)

c′ = −q c d ′ = a (120)

the crossing relations are equivalent to the GLq(2) relations for T provided we also set

φ = −q2λ. (121)

Hence they generalize the relations between T and T −1.

4.3.2. q ′ = q−1, q ′′ = q case. This case appears to be much simpler. Indeed, we have, for
the determinant,

a′D = q Da′ (122a)

b′D = q−1 Db′ (122b)

c′D = q Dc′ (122c)

d ′D = q−1 Dd (122d)

hence

a′D−1 = q−1 D−1a′ (123a)

b′D−1 = q D−1b′ (123b)

c′D−1 = q−1 D−1c′ (123c)

d ′D−1 = q D−1d. (123d)

We also easily obtain D′′ = DD′. Then the left-hand side of the q-transpose relations (7)
reads

D′−1
(a′a + q−2 c′b) D−1 = D′−1

D−1 (q−1 a′a + q−3 c′b) (124a)

D′−1
(q a′c + q−1 c′d) D−1 = D′−1

D−1 (a′c + q−2 c′d) (124b)

D′−1
(q b′a + q−1 d ′b) D−1 = D′−1

D−1 (q2 b′a + d ′b) (124c)

D′−1
(q2 b′c + d ′d) D−1 = D′−1

D−1 (q3 b′c + q d ′d). (124d)

Replacing the crossing relations (110a)–(110p) into these is straightforward and leads to
relations (7).
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4.3.3. q ′ = q−1, q ′′ = q−1 case. This case is less easy than the previous one. We have

a′D = q−1 Da′ + λ da′′ (125a)

b′D = q−1 Db′ + λ db′′ (125b)

c′D = q−1 Dc′ − λ ac′′ (125c)

d ′D = q−1 Dd ′ − λ ad ′′. (125d)

Then we can summarize the relations between T ′′ and T elements by the following formula:

T ′′i
j T k

l = q3−k−i T k
l T ′′i

j (126)

and obtain

a′′D = q Da′′ (127a)

b′′D = q Db′′ (127b)

c′′D = q−1 Dc′′ (127c)

d ′′D = q−1 Dd ′′. (127d)

We can now invert D:

D−1a′′ = q a′′D−1 (128a)

D−1b′′ = q b′′D−1 (128b)

D−1c′′ = q−1 c′′D−1 (128c)

D−1d ′′ = q−1 d ′′D−1 (128d)

and

a′D−1 = q D−1a′ − λ D−2da′′ (129a)

b′D−1 = q D−1b′ − λ D−2db′′ (129b)

c′D−1 = q−1 D−1c′ + λ D−2ac′′ (129c)

d ′D−1 = q−1 D−1d ′ + λ D−2ad ′′. (129d)

We check once again that D′′ = DD′′. We then substitute everything back in the left-hand
side of the q-transpose relations (7) to see after somewhat longer calculations that we obtain
the right-hand side as expected.

5. Product of 3 × 3 matrices

This time we will work in coordinates, since the number of generators and especially
coefficients really becomes bigger than in the two-dimensional case. We will follow the steps
of section 3 and take two quantum matrices T ∈ GLq(3) and T ′ ∈ GLq ′(3) each satisfying
relations (8) with its own R̂-matrix; R̂ and R̂′, respectively. Once again T ′′ will be the matrix
product of T and T ′ and the R̂-matrix associated will be denoted by R̂′′.

The grading of 3 × 3 matrices is taken as in (15):

G =




(0, 0) (0, 1) (1, 1)

(0, −1) (0, 0) (1, 0)

(−1, −1) (−1, 0) (0, 0)


.
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If we look at T i
j T ′k

l products we have one of grading (2, 2) and one of grading (−2, −2),
two of each grading (2, 1), (1, 2), (1, −1), (−1, 1), (−2, −1), (−1, −2), one of each grading
(2, 0), (0, 2), (−2, 0), (0, −2), eight of each grading (1, 1), (1, 0), (0, 1), (0, −1), (−1, 0),
(−1, −1) and 15 of grading (0, 0) for a total of 81 bilinear monomials. Of course, it is exactly
the same for T ′i

j T k
l products. This produces 639 coefficients for general graded ordering

relations between T and T ′ elements.
Fortunately (?) the product condition restricts this number tremendously. In fact, after

solving the equations corresponding to T · T ′ being a quantum matrix, we are left with two
families of solutions: one is, as we shall see precisely of the kind studied in section 3.3. The
second is of a similar form, though all q’s are not equal.

5.1. First family of solutions

In this case, we have

q = q ′ = q ′′ (130)

and

T ′i
j T k

l = (
2i

l − λ 3i
l θ(i − l)

)
T k

l T ′i
j + δi

l (1 − δα
l ) 3i

α T k
α T ′α

j (131)

with

2i
j = 2

j

i (132)

3i
j = 3

j

i (133)

and, since they never appear anywhere,

3i
i = 0. (134)

It is easy to see that this solution is of the form (27)

T ′i
j T k

l = "̃
iβ

αl T
k
β T ′α

j .

with

"̃
ij

kl = (
2i

l − λ 3i
l θ(i − l)

)
δi

k δ
j

l + (1 − δkl) 3i
k δi

l δ
j

k (135)

and that it indeed satisfies R̂ "̃ = "̃ R̂.
Hence according to the results of section 2.3.2, compatibility restricts this solution even

further to

T ′i
j T k

l = 2i
l T k

l T ′i
j (136)

2i
l = 2l

i. (137)

5.2. Second family of solutions

It consists, in fact, of three families of solutions which are very similar if we name the q-
parameters appropriately: setting

q ′′ = − 1

p
(138)
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we have the three following cases:

q = p q ′ = p−1 (139)

q = p−1 q ′ = p (140)

q = p q ′ = p (141)

with

T ′i
j T k

l = − (p θ(i − l) + p−1 θ(l − i)
)

3i
l T k

l T ′i
j + δi

l

(
1 − δα

l

)
3i

α T k
α T ′α

j (142)

and as usual

3i
j = 3

j

i 3i
i = 0. (143)

We can then conduct similar calculations to those of section 3 to investigate compatibility.
This unfortunately leads to similar results, i.e. 3 = 0. Hence this family of solutions must
simply be discarded.

5.3. Summary

In three dimensions, we are left with the single solution (136). This diagonal solution is, in
fact, no more than the commuting case mentioned in the introduction with all the freedom on
the diagonal coefficients expressed explicitly. Among these six coefficients, one can be set to
one according to the same argument on an overall scale factor as in section 4. The other five
express similar degrees of freedom in the quantum relations of each matrix and their product.
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